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Important characteristics of optical resonators and heam waveguides can be inferred from simple

ray-optical considerations. The ray theory is susceptible to an extremely convenient algebraic for-

mulation from which a formal analogy in terms of electrical networks is evident. Most of the avail-

able results for optical resonators and beam waveguides assume tbe medium witbin the structure to

be homogeneous and isotropic. In laser applications of optical resonators the medium is certainly

inhomogeneous and, furthermore, dispersive. A ray analysis M carried through for these complex

cases, and yields some very interesting and general conclusions. In particular, the stability of the

ray systems, i.e., discrimination between higb and low-loss configurations, is discussed in terms of

a generalization of Pierce’s criterion. For simplicity, two-dimensional systems are considered; the

extension to three dimensions follows directly.

The close connection between rays within an optical resonator and rayson an (infinite) beam

waveguide is illustrated in Figure 1. The focal lengths of the curved mirror comprising the optical

cavity are equal to the focal lengths of the simple lenses of the beam waveguide. Now consider the

development of initially parallel and similarly placed rays within each structure. Ray segments

within the resonator which have undergone an even number of reflections are parallel to ray seg-

ments on the beam waveguide, while ray segments which have undergone an odd number of reflec -

tmns within the resonator are mirror images of the corresponding ray segments on the beam wave-

guide.

If we label aseries ofplmee transverse to tie axis of ouropticd system successively . . . ,N - 1,

N, N+l, . . . . then at each of these planes a ray is characterized by two parameters, e.g., the distance

from the axis aand the slope of the rayb. These two parameters maybe suh-sumed ina column

matrix. For successive reference planes, these columns are then relatedly atransformation charac-

teristic of the intervening optical system. An illustration is provided by Figure 2, where the Ntb and

(N+ l)th plane are separated only byadistancel. Clearly

(=+’”’”O’=’””s
(1)

s“”
Figure 1. An OpticalResonator and Equivalent

Beam Waveguide Figure 2. Algebraization of Rays
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For transverse planes separated only by a simple lem (of zero thickness) the transformation matrix

IS

()
10

-c! 1

(2)

where c?, the reciprocal focal length, is considered posltlve for a convergent lens.

The beha”ior of any resonator, for example, the mmple one shown in F~gure 1, may be dwcussed

m terms of a umt-cell of the beam wavegulde. A convenient symmetric umt-cell M mdlcated m Fig-

ure 3. The transformatmn matrix T for this umt cell IS simply the product of the transformation

matmces for each of the constituents:

T‘c:)(-:x:)
‘(

Cose Z sm 9

-Y sm 9 Cos 9 )

(3)

wbe re

COS9 = l-21c and Z=l/Y=lcot (9/2).

I mi F,gure 3. Symmetric Umt Cell of Simple

Beam Wavegulde

2C ‘ C>o

The form, Equatmn (3), IS particularly convement since from It TN M obtmned simply by replacing

9 hyNe.

The forms of Equatzons (1) through (3) provide a cOnvenlent basis fOr development Of the fOrmal

analogy w~th electrical networks also remarked by De schamps and Mast.

One gross physical mdlcator of the electromagnetic state of affams which obtains on either of these

two structures M the characteristic hehavlor (paraxlal) rays. Such riys either rem am closely con-

fined wltim the structure or they d~verge (to mfnnte dmtances) from the structure. A criterion for

dmtmguishmg between these two situations was developed by Fierce and more recently applled by

Boyd and Kogelmk to delimit high-loss and low-loss con f~gurations among optical re senators

formed by two mmrors of different curvatures. As these llmlts have proved of considerable un -

portance to experimenters, a convement, generalized formulation of Pierce’s crlterlOn was develOped.

It may be shown quite generally that m terms of the traneformatmn matrix for a umt cell, Pierce’s

crltermn takes the s~mple form

-1 <;tr.ace of T< 1 (4)

In particular, for the elementary case represented by F~gure 3 and Equat~on (3), one reco”ers the

well-known result (m our notatmn)

O<lc <l. (5)
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Again, it may be shown quite generally ~hat, for any ray, the quantity

a~*lZ12b~ = constant (6)

independent of N. The upper sign applies for stable configurations; the lower sign applies for un-

stable configurations. Equation (6) has an interesting geometrical interpretation. Consider the

development of the ray

()
am

o

(7)

at successive reference planes within the resonator or beam waveguide. If the configuration is stable

the hyperbola shown in Figure 4(1) forms the envelope of the ray system constructed by drawing lines

with the required position and slope at the reference planes. If the configuration is unstable, a similar

role is played by the elllpse shown in Figure 4(b). When the resonator or guide is immersed in a

homogeneous medium (and only then), the rays so constructed actually correspond to physical rays.

Most of the re suits on optical resonators obtained previously disregard possibly special proper-

ties of the medium which fills the cavity; i.e., it is assumed that the medium is homogeneous and iso-

tropic. In laser applications, the medium is probably inbomogeneous and, furthermore, is dispersive.

As already indicated, it is quite feasible to take account of the possibility that the medium within the

re senator is inbomogeneous. From the optical standpoint, two elementary cases come to mind the

medium is either convergent or divergent. Let z be a measure distance along the axis of the res-

onator and y a coordinate transverse to the axis; then the two cases correspond to variations of the

index of refraction n

n(y) = na+vY2, 1~1 << 1> (8)

‘a

near the axis of the re senator, and where for a convergent medium q < 0 and a divergent medium

q > 0. The differential equation for the rays in such media reduces in the paraxial limit to

2
+y=~y

dz a

(9)

Thus, for a convergent medium, the paraxial rays are easily expressed in terms of trigonometric

functions of the coordinate z (hyperbolic functions for divergent medium). The transformation

matrix for a length z of the medium is

( Cosyz Z sin yz

-Y sin yz )

(lo)
Cos ./Z

wbe re

RAYS

(a) (b)

Figure 4. (a) Rays Witbin a Stable System; (b) Rays Within an Unstable System
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It IS evident on compar~son of Equations (10) and (3) that the mhcmmgeneous med~um m fact acts as

a beam wave guide. In fact, m tbe lmnt

! << 1, C<<l, (12)

one obtains the dmect correspondence

(13)

Now cons~der a m smnator or beam .m.”egmde f~lled w~th an mhomogeneous rnedmm. A resona.tm -

fflle d w~th a conve rgerd med~”m M shown m F~gure 5. The tram formatmn nmtrm for a umt cell IS

(

cos 2yJ . KZ Em Zyi Z sm 2y!

-2K cos 2y@ + (K2Z . Y) sm 2y!
)

(14)

?06 2i . KZ sin 2yl

wherein y and Z are given by Equatmn (11). From this matrix one finds that Fhercels criterion m

-l<cos2yl-Kzsm2y!< +1, (15)

or, defining tan + = KZ,

-I<sec+ cos(zyl++)<+l.

t--z------l
2K

m:+

- lNHOMOGENEWS MEDIUM

F,gure 5. fie senator w~th Convergent Inhomogeneous Me d~”m

Thus It m seen that for a resonator w~th a convergent med~uin, stable and unstable z-egmns recur

permd~m.lly for arb~trary separatmns of the resonator plates, 21.

The cha.ractermt~c behavmr of three cases: re senator empty, m senator fdled vnth convergent

med~”m, resonator f~lled vnth d~vm- gent med~wn, M summar~zed m F~gure 6.

In the ne~ghborhood of an a.mpl~fymg trms~tmn, a maser med~um u? also dmperslve. When ttns

dlspers~ve character m coupled with effects due to mhomogene~t>es of the types discussed, gross

dynamic changes in tbe effect~ve Q of optical resonators may be anticipated.
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F~gure 6. Charactemstlc Stab~l~ty Diagram for Opt~ca.1 Re son.dorsand

Beam Wavegu~des
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