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Important characteristics of optical resonators and beam waveguides can be inferred from simple
ray-optical considerations. The ray theory is susceptible to an extremely convenient algebraic for-
mulation from which a formal analogy in terms of electrical networks is evident. Most of the avail-
able results for optical resonators-and beam waveguides assume the medium within the structure to
be homogeneous and isotropic. Inlaser applications of optical resonators the medium is certainly
inhomogeneous and, furthermore, dispersive. A ray analysis is carried through for these complex
cases, and yields some very interesting and general conclusions. In particular, the stability of the
ray systems, i.e., discrimination between high and low-loss configurations, is discussed in terms of
a generalization of Pierce's criterion. For simplicity, two-dimensional systems are considered; the

extension to three dimensions follows directly.

The close connection between rays within an optical resonator and rays on an (infinite} beam
waveguide is illustrated in Figure 1. The focal lengths of the curved mirror comprising the optical
cavity are equal to the focal lengths of the simple lenses of the beam waveguide. Now consider the
development of initially parallel and similarly placed rays within each structure. Ray segments
within the resonator which have undergone an even number of reflections are parallel to ray seg-
ments on the beam waveguide, while ray segments which have undergone an odd number of reflec-

tions within the resonator are mirror images of the corresponding ray segments on the beam wave-~

guide.
1f we label a series of planes transverse to the axis of our optical system successively ... ,N - 1,
N,N+1, ..., then at each of these planes a ray is characterized by two parameters, e.g., the distance

from the axis a and the slope of the ray b. These two parameters may be sub-sumed in a column
matrix. For successive reference planes, these columns are then related by a transformation charac-
teristic of the intervening optical system. An illustration is provided by Figure 2, where the Nth and
(N + 1)th plane are separated only by a distance £. Clearly
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Figure 1. An Optical Resonator and Equivalent
Beam Waveguide Figure 2, Algebraization of Rays
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For transverse planes separated only by a simple lens {of zero thickness) the transformation matrix

18

(2)

-c' 1
where c', the reciprocal focal length, is considered positive for a convergent lens.
The behavior of any resonator, for example, the simple one shown in Figure 1, may be discussed
1n terms of a unit-cell of the beam waveguide. A convenient symmetric unit-cell 18 indicated in Fig-

ure 3. The transformation matrix T for this unit cell 1s simply the product of the transformation

matrices for each of the constituents:

1 2 1 0 1 ¢
T =
0 1 -2c 1 0 1
(3)
cos © Z sin
-Y sin & cos 6

where

cos® = 1-2fc and Z=1/Y = fLcot(8/2).
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‘ l Figure 3. Symmetric Umt Cell of Simple
i * Beam Waveguide
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The form, Equation (3), 1s particularly convenient since from 1t TN 18 obtained simply by replacing
0 by N6.

The forms of Equations (1) through (3) provide a convement basis for development of the formal

analogy with electrical networks also remarked by Deschamps and Mast.

One gross physical indicator of the electromagnetic state of affairs which obtains on either of these
two structures 1s the characteristic behavior {paraxial) rays. Such rdys either remain closely con-
fined within the structure or they diverge (to infimite distances) from the structure. A criterion for
distinguishing between these two situations was developed by Pierce and more recently applied by
Boyd and Kogelnik to delimit high-loss and low-loss configurations among optical resonators
formed by two mirrors of different curvatures. As these limits have proved of considerable 1m-

portance to experimenters, a convement, generalized formulation of Pierce's criterion was developed.

It may be shown quite generally that in terms of the transformation matrix for a unit cell, Pierce's

criterion takes the sumple form
-1 <%trace of T<1, (4)

In particular, for the elementary case represented by Figure 3 and Equation (3), one recovers the

well-known result {in our notation)

0<2c<1. (5)

22



Again, it may be shown quite generally that, for any ray, the quantity
2 2.2
S =
ay 1z} e constant (6)

independent of N. The upper sign applies for stable configurations; the lower sign applies for un-
stable configurations. Equation (6) has an interesting geometrical interpretation. Consider the

development of the ray

a,
)
[

at successive reference planes within the resonator or beam waveguide. If the configuration is stable
the hyperbola shown in Figure 4(a) forms the envelope of the ray system constructed by drawing lines
with the required position and slope at the reference planes. If the configuration is unstable, a similar
role is played by the ellipse shown in Figure 4(b). When the resonator or guide is immersed in a

homogeneous medium (and only then), the rays so constructed actually correspond to physical rays.

Most of the results on optical resonators obtained previously disregard possibly special proper-
ties of the medium which fills the cavity; i.e., it is assumed that the medium is homogeneous and iso~
tropic. In laser applications, the medium is probably inhomogeneous and, furthermore, is dispersive.
As already indicated, it is quite feasible to take account of the possibility that the medium within the
resonator is inhomogeneous. From the optical standpoint, two elementary cases come to mind: the
medium is either convergent or divergent. Let z be a measure distance along the axis of the res-
onator and y a coordinate transverse to the axis; then the two cases correspond to variations of the

index of refraction n

2
n{y} = m +my, %‘—I <1, (8)

a

near the axis of the resonator, and where for a convergent medium 1 < 0 and a divergent medium

n> 0, The differential equation for the rays in such media reduces in the paraxial limit to

d 2n
= — . 9
y P (9)

Thus, for a convergent medium, the paraxial rays are easily expressed in terms of trigonometric
functions of the coordinate z (hyperbolic functions for divergent medium). The transformation

matrix for a length z of the medium is

cos vz Z sin vz
(-Y sin yz cos yz) (o)

where

an
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Figure 4. (a) Rays Within a Stable System; (b) Rays Within an Unstable System
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It 18 evident on comparison of Equations (10} and (3) that the inhomogeneous medium 1n fact acts as

a beam waveguide. In fact, in the limit
P<< 1, c<< 1, (12)

one obtains the direct correspondence

A
.3

= % (13)
a

Now consider a resonator or beam waveguide filled with an inhomogeneous medium. A resonator

filled with a convergent medium 1s shown in Figure 5. The transformation matrix for a unit cell 1s
cos 2y4 - KZ sin 2y Z s1n 2y4
2 (14)
-2K cos 2y4 + (K"Z - Y) sin 2y£ cos 24 - KZ sin 2y
wherein y and Z are given by Equation (11). From this matrix one finds ihat Pierce's criterion 1s
-l<cos 2yl -KZsm2yf <+1, (15)
or, defining tan ¢ = KZ,

-1 < sec ¢ cos(2vL +dY<+ 1.,
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Figure 5. Resonator with Convergent Inhomogeneous Medium

Thus it 1s seen that for a resonator with a convergent medium, stable and unstable regions recur

periodically for arbitrary separations of the resonator plates, 24.

The characteristic behavior of three cases: resonator empty, resonator filled with convergent

medium, resonator filled with divergent medium, i1s summarized in Figure 6.

In the neighborhood of an amplifying transition, a maser mediwum 18 also dispersive. When this
dispersive character is coupled with effects due to inhomogeneities of the types discussed, gross

dynamic changes in the effective Q of optical resonators may be anticipated.
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Figure 6. Characteristic Stability Diagram for Optical Resonators and
Beam Waveguides
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